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Abstract

We theoretically and experimentally investigate the biases
and the variances of Fast Fourier transform (FFT) spectral es-
timates with different windows (data tapers) when used to an-
alyze power-law noise types f°, f=2, f~3 and f~*. Thereis a
wide body of literature for white noise but virtually no investiga-
tion of biases and variances of spectral estimates for power-law
noise spectra commonly seen in oscillators, amplifiers, mixers,
etc. Biases (errors) in some cases exceed 30 dB. The experi-
mental techniques introduced here permit one to analyze the
performance of virtually any window for any power-law noise.
This makes it possible to determine the level of a particular
noise type to a specified statistical accuracy for a particular
window.

I. Introduction

Fast Fourier transform (FFT) spectrum analyzers are very
commonly used to estimate the spectral density of noise. These
instruments often have several different windows (data tapers)
available for analyzing different types of spectra. For example,
in some applications spectral resolution is important; in others,
the precise amplitude of a widely resolved line is important; and
in still other applications, noise analysis is important. These
diverse applications require different types of windows.

We theoretically and experimentally investigate the biases
and variances of FFT spectral estimates with different windows
when used to analyze a number of common power-law noise
types. There is a wide body of literature for white noise but vir-
tually no investigation of these effects for the types of power-law
noise spectra commonly seen in oscillators, amplifiers, mixers,
etc. Specifically, we present theoretical results for the biases
associated with two common windows — the uniform and Han-
ning windows — when applied to power-law spectra varying
as f% f7? and f~%. We then introduce experimental tech-
niques for accurately determining the biases of any window and
use them to evaluate the biases of three different windows for
power-law spectra varying as f°, =2, =% and f~%. As an ex-
ample we find with f~* noise that the uniform window can have
errors ranging from a few dB to over 30 dB, depending on the
length of span of the f~* noise.

We have also theoretically investigated the variances of
FFT spectral estimates with the uniform and Hanning windows
(confidence of the estimates) as a function of the power-law
noise type and as a function of the amount of data. We in-
troduce experimental techniques that make it relatively easy to
independently determine the variance of the spectral estimate
for virtually any window on any FFT spectrum analyzer. The
variance that is realized on a particular instrument depends not
only on the window but on the specific implementation in both
hardware and software. We find that the variance of the spec-
tral density estimates for white noise, f°, is very similar for
three specific windows available on one instrument and almost
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identical to that obtained by standard statistical analysis. The
variances for spectral density estimates of f~* noise are only
4% higher than that of f° noise for two of the windows stud-
ied. The third window — the uniform window — does not yield
usable results for either f~3 or f~* noise.

Based on this work it is now possible to determine the
minimum number of samples necessary to determine the level
of a particular noise type to a specified statistical accuracy as a
function of the window. To our knowledge this was previously
possible only for white noise — although the traditional results
are generally valid for noise that varied as f~#, where 8 was
equal to or less than 4.

II. Spectrum Analyzer Basics

The spectrum analyzer which was used in the experimen-
tal work reported here is fairly typical of a number of such in-
struments currently available from various manufacturers. The
basic measurement process generally consists of taking a string
of N, = 1024 digital samples of the input wave form, which we
represent here by X, Xs, ..., Xn,. The basic measurement
period was 4 ms. This yields a sampling time At = 3.90625 us.
Associated with the FFT of a time series with N, data points,
there are usually (N,/2) + 1 = 513 frequencies

f; J

=m, j=0,1,...,N,/2.
s

The fundamental frequency f; is 250 Hz, and the Nyquist fre-
quency fn,sz is 128 kHz. Since the spectrum analyzer uses
an anti-aliasing filter which significantly distorts the high fre-
quency portion of the spectrum, the instrument only displays
the measured spectrum for the lowest 400 nonzero frequencies,
namely, fi = 250 Hz, f; = 500 Hz, ..., fso0 = 100 kHz.

The exact details of how the spectrum analyzer estimates
the spectrum for Xj, ..., X, are unfortunately not provided
in the documentation supplied by the manufacturer, so the fol-
lowing must be regarded only as a reasonable guess on our part
as to its operation (see [1] for a good discussion on the basic
ideas behind a spectrum analyzer; two good general references
for spectral analysis are [2] and [4]). The sample mean,

XELZX,,

is subtracted from each of the samples, and each of these “de-
meaned” samples is multipled by a window A, (sometimes called
a data taper) to produce

x® =k (X, - X).

The spectral estimate,
2

N,
$i(f)= Aty XPemhAY 20,1, N,/2,

t=1
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is then computed using an FFT algorithm.

The subscript “1” on S1(f;) indicates that this is the spec-
tral estimate formed from the first block of N, samples. A
similar spectral estimate $,(f;) is then formed from the second
block of contiguous data Xn,+1, XN, 42, ..., X2n,. In all, there
are N, different spectral estimates from N, contiguous blocks,
and the spectrum analyzer averages these together to form

N 1 &,
5(f;) = mzsk(fi)' (1
k=1

It is the statistical properties of S'(f]) with which we are con-
cerned in this paper.

Unfortunately some important aspects of the windows are
not provided in the documentation for the instrument. One im-
portant detail is the manner in which the window is normalized.
There are two common normalizations:

N,

3 (X - X)*

t=1

1
N,

Z [he (X~ X)) =

and

N,

S or=1 (2)
t=1

The first of these is common in engineering applications because
it ensures that the power in the windowed samples Xih) is the
same as in the original demeaned samples; the second is equiv-
alent to the first in expectation and is computationaly more
convenient, but it can result in small discrepancies in power
levels. Either normalization affects only the level of the spec-
tral estimate and not its shape.

There are three windows built into the spectrum analyzer
used here. The first is the uniform (rectangular, default) win-
dow th) =1/+/N,. The second is the Hanning data window,
for which there are several slightly different definitions in the
literature. In lieu of specific details, we assume the following
symmetric definition:

_2n(t - 05)

s

hﬁ’”:C(”)(l—co ) 15t5%,

H
= hSV.)—tH’

X +1<t< N

2
here CU) is a constant which forces the normalization in Equa-
tion (2). The third window is a proprietary “flattened peak”
window, about which little specific information is available (it
is evidently designed to accurately measure the heights of peaks
in a spectrum).

III. Expected Value and Bias of Spectral Estimates
ITII.A. Theoretical Analysis

We need to assume a noise model for the X,’s in order
to determine the statistical properties of 5’(f,) in Equation (1).
We consider three different models, each of which is represented
in terms of a Gaussian white noise process ¢; with mean zero
and variance o2, The second-order properties of each model
are given by a spectral density function S(-) defined over the
interval [—-1/(2At),1/(2At)] in cycles/At. The first model is a

discrete parameter, white noise process (f° noise):

Xi=¢ and S(f)= azAtA
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The second model is a discrete-parameter, random-walk process
(nominally f~2 noise):

t

X, =) e and S(f)=

s=1

a2At
4sin® (7 fAL)”

The third model is a discrete-parameter, random-run process
(nominally f~* noise):

X;=) Y€ and S(f)=

r=1s=1

alAt
16sin* (rfA)

Continuous parameter versions of these three models have been
used extensively in the literature as models for noise commonly
seen in oscillators.

For each of the three models we have derived expressions
for E{S'(f)}, the expected value of S'(f) These expressions
depend on the window h¢, the number of samples N, in each
block and — in the case of a random-run process — the num-
ber of blocks N,. The details behind these calculations will be
reported elsewhere [3]; here we merely summarize our conclu-
sions for the three models in combination with the uniform and
Hanning windows and N, = 1024.

First, for a white noise process,

E{S(£i)} = S(f;);

when the uniform window is used. For the Hanning window,
the above equality also holds to a very good approximation for
2 < j <511 and to within 0.8 dB for j = 1 and 512 (the latter
is of no practical importance since the highest frequency index
given by the spectrum analyzer is j = 400). These theoretical
calculations agree with our experimental data except at fi (see
Table 1).
Second, for a random-walk process,

E{S(f;)} = 25(f;),

when the uniform window is used, i.e., the expected value is
twice what it should be at all frequencies. This theoretical re-
sult has been verified by Monte Carlo simulations, but it does
not agree with our experimental data, which shows no signifi-
cant level shift in the estimated spectrum. The source of this
discrepancy is currently under investigation, but it may be due
to either (a) factors in the experimental data which effectively
make it band-limited, random-walk noise, i.e., its spectral shape
is markedly different from f~2 for, say, 0 < f < f1 or (b) an
incorrect guess on our part as to how the spectral estimate is
normalized by the spectrum analyzer. For the Hanning window,
we found that

i=1,2,...,512

j=1,2,...,512,

L085(f;) j=1;
1485(f;) =2
sy ) 11BS(f) i=3;
E{S(fj)} = ]_075(]';) j =4
1045(f;) 7 =5

S(f;) 6 < j <511 to within 3%,

ie., S'(f,) is essentially an unbiased spectral estimate except
for the lowest few frequencies. This theoretical result has been
verified by Monte Carlo simulations and also agrees in general
with our experimental data.

Third, for a random-run process,

E{5(f)} =Cn,f7%,  1<j <400,



to a good appoximation when the uniform window is used,
where Cl, is a constant which depends on the number of blocks
N and increases as N increases. Thus the shape of E{S(f,)}
follows that of a random-walk process (f~2) rather than that
of a random-run process (f~*). This shape has been verified
experimentally (see the next subsection), but the dependence
of the level on N has not. The increase in level of E{S(f;)} as
N, increases is due to the fact that the expected value of the
sample variance of a block of N, samples increases with time
— by contrast, it is constant with time for the white noise and
random-walk cases. For the Hanning window, we found that
E{5(f;)} = Cn,5(f;), 4 <j <400,

to a good approximation, where again C}, is a constant —
different from Cn, — which depends on the number of blocks
Np and increases as N, increases. For frequencies less than
fa the theoretical results indicate significant (greater than 4%)
distortion in the shape, but these do not agree in detail with the
experimental values reported in Table 1. For f; 2 fa the shape
has been verified experimentally, but the dependence of the level
on Nj has not. The discrepancy in level between the theoretical
and experimental results is yet to be resolved, but it is probably
due to a mismatch between the assumed random-run model and
the true spectrum for the data (possibly band-limited random-
run).

1) Verify Spectral Density Function & Voltage Reference

ol T amm,

2) Measure Spectrum Relative to Noise Source
Requires Multiple Scans

V410 ETH

sve(f)

3) Measure Filter Transfer Function h(f)
5

4) Calculate Biases
B(f) = Sym(f) - h2(f) Syn(f)

Figure 1. Outline of measurement procedure for determining
the biases in spectral estimators.

III.B. Experimental Determination

The following procedure can be used to experimentally de-
termine the bias in the spectral estimate of any noise spectrum
using any window in a particular instrument. The basic concept
is to implement a filter that, when applied to white noise, mim-
ics the approximate noise spectra of interest and then measures
the level of the white noise and the filter transfer function in a
way which has high precision and accuracy as illustrated in F ig-
ure 1. First, the level of a known white noise is measured over
a convenient range. The higher the frequency span the faster
that this is accomplished. Obviously, the chosen range must
be one over which the noise source is accurate. To obtain a
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precision of order 0.2 dB generally requires 1000 samples. This
measurement verifies that the spectral density function and the
internal reference voltage of the FFT are accurately calibrated
and working properly. Virtually all of the windows accurately
determine the value of white noise if the first few channels are
ignored as explained above. Figure 2 shows the measurement
of a noise source, which has been independently determined to
have a noise spectral density of 99.8 dBV/Hz by the three win-
dows. (Appendix A shows the circuit diagram for this noise
source which has an accuracy of better than 0.2 dB for frequen-
cies from 20 to 20 kHz.)
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Figure 2. Spectral estimation of a white noise standard us-

ing the uniform, Hanning and the proprietary “flattened peak”
windows.

Second, an approximately flat spectrum is measured over
the frequency range of interest. It is not important if there are
small variations in the level that change slowly over the fre-
quency span. Third, the transfer function of the filter is deter-
mined for the frequencies of interest using a very narrow spectral
source (typically an audio oscillator is sufficient). The very nar-
row source is accurately measured by the window since there is
no problem with either high frequency or low frequency noise
biasing the estimate. The use of a window with a flattened peak
response is helpful but not necessary if the frequency source is
sufficiently stable. This transfer function is then applied to the
measured white noise spectrum in step two above. This yields a
very accurate value for the “true” spectral density of the white
noise source as measured through the filter. This “true value” is
then compared to that obtained by the FFT analyzer. The dif-
ference between that measured in steps two and three and that
measured directly with the FFT is the bias in the spectral esti-
mate for that particular window and noise type. The accuracy
of this approach comes from the fact that the calibration has
been broken up into steps that can individually be determined
with high precision and very small bias. The primary assump-
tion is that the FFT analyzer is linear. Even this assumption
can be checked by using precision attenuators. If the known
white noise in step one does not extend to the frequencies of
interest, then there is an additional assumption that the FFT
is flat with frequency. This assumption is nearly always good
except perhaps near the last few channels where the effect of
the antialiasing filter might cause small inaccuracies.

Figures 3a and 3b show the “true” spectral estimate and
the estimates as measured on a particular instrument using the
uniform, Hanning, and the instrument’s proprietary “flattened
peak” windows for noise that varies as f~* over much of the
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Figures 3a (top) and 3b (bottom). Difference between the true
spectrum (top) which varies approximately as f~* and that
estimated by the uniform, Hanning and proprietary “flattened
peak” windows (bottom).

range from 1 kHz to 100 kHz. The scan is 0 to 100 kHz, and
1000 samples were taken for all curves. Note the considerable
difference between the spectral estimates for channels 1 to 3 for
the Hanning and proprietary “flattened peak” windows. These
results confirm the theoretical calculations above showing that,
for the Hanning window, the first 3 channels should be ignored.
For the “flattened peak” window, the first 14 channels should
be ignored. For both f~* and f~* noise, the uniform window
does not yield usable spectral estimates over any portion of the
scan. Note in this example that at frequencies above 80 kHz
there is a small step in the spectral estimates. This is due
to digitizing errors of the signal due to quantization. If the
digitizer had more bits, these errors would not occur. This
problem of dynamic range is common whenever the spectrum of
interest covers many decades. The usual solution is to use filters
to divide the spectrum into various frequency range segments
which are suitable for the dynamic range of the FFT.

Table 1 summarizes the measured experimental biases in
the spectral estimates of a particular instrument with three dif-
ferent windows for power-law noise types varying from f° to
f~*. This covers most of the random types of noise found in os-
cillators and signal processing equipment. We do not advocate
using the biases reported in this table to correct data — they
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Table 1. Approximate Biases in FFT Spectral Estimates
noise type f°

channel # uniform Hanning flattened peak
1 19.6 dB 19.6 dB 20.1 dB
2 small small 16.7 dB
3 l l 7.2 dB
4 small
5 !

noise type f~*

channel # uniform Hanning flattened peak
1 unusable 8.6 dB 10.0 dB
2 0.4 dB 9.1dB
3 0.4 dB 4.0 dB
4 small 1.2dB
5 { 1.1dB
6 1.1 dB
7 1.0 dB
8 0.8 dB
9 0.6 dB
10 0.6 dB
11 0.5 dB
12 0.4 dB
13 0.4 dB
14 small
15 l

only indicate which channels should not be relied upon for data
analysis.

IV. Variances of Spectral Estimates
IV.A. Theoretical Analysis

We have derived expressions for var{3(f)} — the variance
of §(f) — for each of the three models considered in Section
III.A. These expressions depend primarily on the number of
blocks Ny. Again, the details behind these calculations will be
reported elsewhere (3].

First, for a white noise process, the uniform window yields

var{S(f;)} = S*(f;)/Ns,  1<j <511,

while the Hanning window yields
0.695%(f;)/ Ny,

S2(f)/Ns,
1.035%(f;)/Ns,

var{S(;)} =

These results are consistent with our experimental results and
with standard statistical theory.

Second, for a random-walk process, the uniform window
yields

var{$(f;)} = 55%(f;)/Ns, 1< <511,



while the Hanning window yields

1.30S%(f;)/Ns, j=1;
2.20S8%(f;)/ Ny, §=2;
1315%(f;)/ Ny, =3,
L15S%(f;)/Ns, =4
1.0952(f,-)/Nb, j = 5;
1.065%(£;)/Ns, j =6;
L.04S*(f;)/Ns, j=T;

Sz(fj)/Nb, 8 < j <511 to within 3%.

var{$(f;)} =

Except for the few lowest frequencies, the results for the Han-
ning window agree with our experimental results and with stan-
dard statistical theory; however, the factor of five in the variance
for the uniform window disagrees with our experiments and with
standard theory (although it has been verified by Monte Carlo
techniques). The cause of this discrepancy is under investiga-
tion, but we think it is due to the band-limited nature of the
experimental data.

Third, for a random-run process, the variance computa-
tions are not useful since the variance is dominated by the fact
that the expected value of the sample variance for each block of
samples increases with time. The agreement which we found be-
tween standard statistical theory and our experimental results
on the 1/N; rate of decrease of variance is undoubtedly due
to the band-limited nature of the experimental data. We will
attempt to verify these conclusions in the future using Monte
Carlo techniques.
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Figure 4. Comparison of the spectral estimate of f~* power-
law noise with 1000 samples with that obtained with 32 sam-
ples. The text explains how these two curves are used to obtain
the fractional RMS confidence of the spectral estimate for 32
samples.

IV.B. Experimental Determination

The following procedure can be used to experimentally de-
termine the variance of the spectral estimates of virtually any
type of noise spectrum with any type of window for a particular
instrument. Since the spectral density of interest is in general
nonwhite, we must determine both the “true value” and a way
to normalize the fractional error of the estimate as a function
of the number of samples. This can be done by making use
of the above theoretical analysis that shows that the variance
should decrease as the square root of the number of samples
since they are approximately statistically independent (in fact,
exactly so in the cases of white and random-walk noise). As an
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example we have chosen to take N = 1000 blocks of the various
power-law noise types examined in III.B above and compare the
value of the spectral estimate with that obtained from N = 32
blocks (see Figure 4). Since the variance of the 1000 block data
is about 32 times smaller than that of the 32 block data, it can
serve as an accurate estimate of the “true value.” Let Sioo0(f;)
represent this quantity at the j-th channel (frequency). By sub-
tracting the 1000 block data from the 32 block data at the j-th
channel, we then have one estimate of the error for the 32 block
data; by repeating this procedure over N, different channels
and N, different replications, we can obtain accurate estimates
of the variance for the 32 block data. Let 5'32,-( f;) represent the
spectral estimate for the 32 block data at the j-th channel and
the i-th replication. To compensate for the variation in the level
of the spectral estimates with channel, it is necessary to divide
the error at the j-th channel by the “true value” S‘moo(fj). The
mean square fractional error of the 32 block data for the noise
type under study is given by

s 1 ol (SBZi(fj)_SIOOO(fj))Z
P52 = N,N, ;zj: S1000(f5)

o var{Sen(fi)}
5*(f3)

It is assumed that all channels with bias — as indicated in Ta-
ble 1 — have been excluded in the summation over j. It is also
important that the changes in the spectral density not exceed
the dynamic range of the digitizer because under this condition
the quantization errors — in addition to causing biases in the
spectral estimates as discussed earlier — can lead to situations
where the variance does not improve as Nj increases. These val-
ues can be scaled to any number of blocks Ny if care is taken to
avoid these quantization errors. Upper and lower approximate
67% confidence limits for S(fj) — the true spectral density at
channel j — using Hanning, uniform and the proprietary “flat-
tened peak” windows for N, approximately independent blocks
are given by

S(F) (1 £V (a, M)

where S"(fj) is the spectral estimate given by Equation (1) and
V(a, N3) is the fractional variance given in Table 2 for f* and
a =0, -2, -3 and -4 (these results were obtained by averaging
over NN, = 1200 channels). The variances obtained are very
close to those obtained from standard statistical analysis for

white noise, i.e.,
A 1
S(fillt—=] .
) (1% 7)

Table 2. Confidence Intervals for FFT Spectral Estimates

power law window

noise type uniform Hanning flattened peak
f° 1.02//N, 0.98/v/Np 0.98/+/Ny
f? 1.02//Ny 1.04//Ny 1.04//Ny
f3 unusable 1.04/VNy 1.04/v/Ny
f unusable 1.04/y/N; 1.04//N;

V. Conclusions

We have introduced experimental techniques to evaluate
the statistical properties of FF'T spectral estimates for common
noise types found in oscillators, amplifiers, mixers and similar



devices, and we have compared these with theoretical calcua-
tions. We have used these techniques to study the biases and
variances of FFT spectral estimates using the uniform, Han-
ning, and a proprietary “flattened peak” window. The theo-
retical analysis was greatly hampered because the instrument
manufacturer does not disclose the exact form of the “flattened
peak” window or the normalization procedure for the other win-
dows. Nevertheless, we obtained fair agreement between the
theoretical and the experimental analysis. The variances of
the spectral estimation were virtually identical to a few per-
cent for f° to f~* noise except for the uniform window which
is incapable of measuring noise which falls off faster than f~2.
There was a very large difference in the biases of the first few
channels for the three windows. The Hanning window showed
significant biases in the first 3 channels while the proprietary
“flattened peak” window showed large biases for f~* noise even
up to channel 13. The Hanning window therefore yields useful
information over three times wider frequency range than the
proprietary “flattened peak” window. In the particular instru-
ment studied, the proprietary “flattened peak” window is the
best choice for estimating the height of a narrow band source,
while the Hanning window is by far the best choice for spectral
analysis of common noise types found in oscillators, amplifiers,
mixers, etc. We have also shown that the 67% confidence levels
for spectral estimation as a function of the number of contiguous
nonoverlapping blocks, Ny, is approximately given by

1.04

\/va)

for noise types f~% to f~*. This agrees to within 4% of that
found by standard statistical analysis for white noise. Using
this data one can now determine the number of samples nec-
essary to estimate — to a given level of statistical uncertainty
— the spectrum of the various noise types commonly found in
oscillators, amplifiers, mixers, etc.

0.98
VN,

S=Sm<1:t

for white noise (f°) and by

S=Sm<1:h

References

{1] D. Babitch and J. Oliverio, “Phase Noise of Various Oscil-
lators at Very Low Fourier Frequencies,” in Proceedings of
the 28th Annual Symposium on Frequency Control, 1974,
pp. 150-159.

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal
Processing. Englewood Cliffs, New Jersey: Prentice Hall,
1989, ch. 11, pp. 695-767.

D. B. Percival and F. L. Walls, “Spectral Analysis of Power-
Law Processes with a Spectrum Analyzer,” manuscript in
preparation, 1989.

M. B. Priestley, Spectral Analysis and Time Series. Lon-
don: Academic Press, 1981, ch. 7, pp. 502-612.

[2

(3]
4]

Appendix. Precision Noise Source

Figure 5 shows the circuit diagram of a precision noise
source whose spectral density can be determined from first prin-
ciples to 0.2 dB over the frequency range from 20 Hz to 20 kHz.
The spectral density is basically given by the Johnson noise of
the 10° ohm resistor, V;2 = 4kT R, where T is in Kelvin, and & is
Boltzmann’s constant. Corrections due to the input noise volt-
age and noise current of the amplifier amount to about 0.2 dB
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for the circuit elements shown. All resistors are precision 1%
metal film resistors. The output level can be switched from
-100 dBV/Hz to -80 dBV/Hz. By adjusting the noise-gain ca-
pacitors one can make the noise spectrum flat to within 0.3 dB
out to 200 kHz. There is also provision to measure the input
noise voltage of the amplifier by shorting the input to ground
or the combined noise voltage and noise current by switching a
220 pF capacitor into the input instead of the 10° ohm noise
resistor.

Figure 5.

Circuit diagram of a precision noise source.




